Weyl's Lemma (Laplace Equation)

CHF 43.15
Auf Lager
SKU
CVQT6PNIEI9
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, Weyl's lemma is a result that provides a "very weak" form of the Laplace equation. It is named after the German mathematician Hermann Weyl. Let n in mathbb{N} and let be an open subset of mathbb{R}^{n}. Let denote the usual Laplace operator. Suppose that u is locally integrable (i.e., u in L{mathrm{loc}}^{1} (Omega; mathbb{R})) and that int{Omega} u(x) Delta phi (x) , mathrm{d} x = 0 quad (Eq. 1) for every smooth function phi : Omega to mathbb{R} with compact support in . Then, possibly after redefinition on a set of measure zero, u is smooth and has u = 0 in . Weyl's lemma can be proved by convolving the function u with an appropriate mollifier, and then showing that the resulting function satisfies the mean value property, which is equivalent to being harmonic. The nature of the mollifer chosen means that, except on a set of measure zero, the function u is equal to its own mollifier.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131192975
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131192975
    • Format Fachbuch
    • Titel Weyl's Lemma (Laplace Equation)
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38