Weyl Tensor

CHF 48.85
Auf Lager
SKU
K8QM4L3PQPR
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. The Ricci curvature, or trace component of the Riemann tensor contains precisely the information about how volumes change in the presence of tidal forces, so the Weyl tensor is the traceless component of the Riemann tensor. It is a tensor that has the same symmetries as the Riemann tensor with the extra condition that it be trace-free: metric contraction on any pair of indices yields zero.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130366377
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2010
    • EAN 9786130366377
    • Format Fachbuch
    • ISBN 978-613-0-36637-7
    • Titel Weyl Tensor
    • Untertitel Differential Geometry, Hermann Weyl, Curvature, Spacetime, Riemannian Manifold, Riemann Curvature Tensor, Tidal Force, Ricci Curvature, Tensor Contraction, General Relativity
    • Gewicht 201g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 124
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38