Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Whitehead Theorem
CHF 42.60
Auf Lager
SKU
L474SBRO2GF
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between topological spaces X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence provided X and Y are connected and have the homotopy-type of CW complexes. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the CW complex concept that he introduced there. More accurately, we suppose given CW complexes X and Y, with respective base points x and y. Given a continuous mapping fcolon X to Y such that f(x) = y, we consider for n 0 the induced homomorphisms f colon pin(X,x) to pi_n(Y,y), where n denotes for n 1 the n-th homotopy group. For n = 0 this means the mapping of the path-connected components; if we assume both X and Y are connected we can ignore this as containing no information. We say that f is a weak homotopy equivalence if the homomorphisms f are all bijective. The Whitehead theorem then states that a weak homotopy equivalence, for connected CW complexes, is a homotopy equivalence.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131191183
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131191183
- Format Fachbuch
- Titel Whitehead Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 76
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung