Whitehead Theorem

CHF 42.60
Auf Lager
SKU
L474SBRO2GF
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between topological spaces X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence provided X and Y are connected and have the homotopy-type of CW complexes. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the CW complex concept that he introduced there. More accurately, we suppose given CW complexes X and Y, with respective base points x and y. Given a continuous mapping fcolon X to Y such that f(x) = y, we consider for n 0 the induced homomorphisms f colon pin(X,x) to pi_n(Y,y), where n denotes for n 1 the n-th homotopy group. For n = 0 this means the mapping of the path-connected components; if we assume both X and Y are connected we can ignore this as containing no information. We say that f is a weak homotopy equivalence if the homomorphisms f are all bijective. The Whitehead theorem then states that a weak homotopy equivalence, for connected CW complexes, is a homotopy equivalence.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131191183
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131191183
    • Format Fachbuch
    • Titel Whitehead Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38