Whitney Embedding Theorem

CHF 49.05
Auf Lager
SKU
EF5PB503KJ0
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, particularly in differential topology, there are two Whitney embedding theorems: The strong Whitney embedding theorem states that any smooth m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in Euclidean 2m-space, if m0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into Euclidean (2m 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney). The weak Whitney embedding theorem states that any continuous function from an n-dimensional manifold to an m-dimensional manifold may be approximated by a smooth embedding provided m2n. Whitney similarly proved that such a map could be approximated by an immersion provided m2n-1. This last result is sometimes called the weak Whitney immersion theorem.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131170331
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131170331
    • Format Fachbuch
    • Titel Whitney Embedding Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 108
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38