Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Whitney Embedding Theorem
CHF 49.05
Auf Lager
SKU
EF5PB503KJ0
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, particularly in differential topology, there are two Whitney embedding theorems: The strong Whitney embedding theorem states that any smooth m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in Euclidean 2m-space, if m0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into Euclidean (2m 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney). The weak Whitney embedding theorem states that any continuous function from an n-dimensional manifold to an m-dimensional manifold may be approximated by a smooth embedding provided m2n. Whitney similarly proved that such a map could be approximated by an immersion provided m2n-1. This last result is sometimes called the weak Whitney immersion theorem.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131170331
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131170331
- Format Fachbuch
- Titel Whitney Embedding Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 108
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung