Whitney Immersion Theorem

CHF 49.15
Auf Lager
SKU
5F7F180M86N
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

High Quality Content by WIKIPEDIA articles! In differential topology, the Whitney immersion theorem states that for m 1, any smooth m-dimensional manifold can be immersed in Euclidean 2m 1-space. Equivalently, every smooth m-dimensional manifold can be immersed in the 2m 1-dimensional sphere (this removes the m 1 constraint). The weak version, for 2m, is due to transversality (general position, dimension counting): two m-dimensional manifolds in mathbf{R}^{2m} intersect generically in a 0-dimensional space.Massey went on to prove that every n-dimensional manifold is cobordant to a manifold that immerses in S2n a(n) where a(n) is the number of 1's that appear in the binary expansion of n. In the same paper, Massey proved that for every n there is manifold (which happens to be a product of real projective spaces) that does not immerse in S2n 1 a(n).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131170638
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131170638
    • Format Fachbuch
    • Titel Whitney Immersion Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 112
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38