Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Why Prove it Again?
Details
This monograph considers several well-known mathematical theorems and asks the question, Why prove it again? while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems.
The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials.
Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
Contains comparative studies of alternative proofs of various well-known theorems Stresses the informal notion of what constitutes a proof, as opposed to the formal notion of proof in mathematical logic Will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians
Autorentext
John W. Dawson, Jr., is Professor Emeritus at Penn State York.
Inhalt
Proofs in Mathematical Practice.- Motives for Finding Alternative Proofs.- Sums of Integers.- Quadratic Surds.- The Pythagorean Theorem.- The Fundamental Theorem of Arithmetic.- The Infinitude of the Primes.- The Fundamental Theorem of Algebra.- Desargues's Theorem.- The Prime Number Theorem.- The Irreducibility of the Cyclotomic Polynomials.- The Compactness of First-Order Languages.- Other Case Studies.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 220
- Herausgeber Springer International Publishing
- Gewicht 500g
- Untertitel Alternative Proofs in Mathematical Practice
- Autor Jr. Dawson
- Titel Why Prove it Again?
- Veröffentlichung 24.07.2015
- ISBN 3319173677
- Format Fester Einband
- EAN 9783319173672
- Jahr 2015
- Größe H241mm x B160mm x T18mm
- Lesemotiv Verstehen
- Auflage 1st edition 2015
- GTIN 09783319173672