Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Wigner Quasi-probability Distribution
CHF 49.00
Auf Lager
SKU
34BT33GJDJQ
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026
Details
High Quality Content by WIKIPEDIA articles! The Wigner quasi-probability distribution (also called the Wigner function or the Wigner Ville distribution) is a special type of quasi-probability distribution. It was introduced by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics. The goal was to supplant the wavefunction that appears in Schrödinger's equation with a probability distribution in phase space. It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical wavefunction (x). Thus, it maps on the quantum density matrix in the map between real phase-space functions and Hermitian operators introduced by Hermann Weyl in 1927, in a context related to representation theory in mathematics (cf. Weyl quantization in physics). In effect, it is the Weyl Wigner transform of the density matrix, so the realization of that operator in phase space. It was later rederived by J. Ville in 1948 as a quadratic (in signal) representation of the local time-frequency energy of a signal.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130319731
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2009
- EAN 9786130319731
- Format Kartonierter Einband
- ISBN 978-613-0-31973-1
- Titel Wigner Quasi-probability Distribution
- Untertitel Eugene Wigner, Quantum, Wave Function, Schrödinger Equation, Generating Function, Density matrix, Weyl Quantization, Quantum Chemistry, Seismology, Negative Probability
- Gewicht 189g
- Herausgeber Betascript Publishers
- Anzahl Seiten 116
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung