Word (Group Theory)

CHF 42.60
Auf Lager
SKU
A1MSAHEQ63U
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z-1xzz and y-1zxx-1yz-1 are words in the set {x, y, z}. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory. Let G be a group, and let S be a subset of G. A word in S is any expression of the form s1^{epsilon1} s2^{epsilon2} cdots sn^{epsilonn} where s1,...,sn are elements of S and each i is ±1. The number n is known as the length of the word. Each word in S represents an element of G, namely the product of the expression. By convention, the identity element can be represented by the empty word, which is the unique word of length zero.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131185724
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131185724
    • Format Fachbuch
    • Titel Word (Group Theory)
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 84
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38