Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Z Theorem
CHF 36.90
Auf Lager
SKU
EKIVO02MUDC
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, George Glauberman's Z theorem states that if G is a finite group and T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z (G). The subgroup Z (G) is the inverse image in G of the center of G/O(G), where O(G) is the maximal normal subgroup of G of odd order. This generalizes the Brauer Suzuki theorem (and the proof uses the Brauer-Suzuki theorem to deal with some small cases). The original paper (Glauberman 1966) gave several criteria for an element to lie outside Z (G). Its theorem 4 states: For an element t in T, it is necessary and sufficient for t to lie outside Z (G) that there is some g in G and abelian subgroup U of T satisfying the following properties: 1. g normalizes both U and the centralizer CT(U), that is g is contained in N = NG(U) NG(CT(U)). 2. t is contained in U and tg gt. 3. U is generated by the N-conjugates of t. 4. the exponent of U is equal to the order of t.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131182686
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131182686
- Format Fachbuch
- Titel Z Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 68
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung