Z Theorem

CHF 36.90
Auf Lager
SKU
EKIVO02MUDC
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, George Glauberman's Z theorem states that if G is a finite group and T is a Sylow 2-subgroup of G containing an involution not conjugate in G to any other element of T, then the involution lies in Z (G). The subgroup Z (G) is the inverse image in G of the center of G/O(G), where O(G) is the maximal normal subgroup of G of odd order. This generalizes the Brauer Suzuki theorem (and the proof uses the Brauer-Suzuki theorem to deal with some small cases). The original paper (Glauberman 1966) gave several criteria for an element to lie outside Z (G). Its theorem 4 states: For an element t in T, it is necessary and sufficient for t to lie outside Z (G) that there is some g in G and abelian subgroup U of T satisfying the following properties: 1. g normalizes both U and the centralizer CT(U), that is g is contained in N = NG(U) NG(CT(U)). 2. t is contained in U and tg gt. 3. U is generated by the N-conjugates of t. 4. the exponent of U is equal to the order of t.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131182686
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131182686
    • Format Fachbuch
    • Titel Z Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38