Z-Transform

CHF 43.15
Auf Lager
SKU
ODO0ETPI0I8
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! Examples 2 & 3 clearly show that the Z-transform X(z) of x[n] is unique when and only when specifying the ROC. Creating the pole-zero plot for the causal and anticausal case show that the ROC for either case does not include the pole that is at 0.5. This extends to cases with multiple poles: the ROC will never contain poles. In example 2, the causal system yields an ROC that includes left z right = infty while the anticausal system in example 3 yields an ROC that includes left z right = 0 . ROC shown as a blue ring 0.5 left z right 0.75 In systems with multiple poles it is possible to have an ROC that includes neither left z right = infty nor left z right = 0 . The ROC creates a circular band. For example, x[n] = 0.5^nu[n] - 0.75^nu[-n-1] has poles at 0.5 and 0.75. The ROC will be 0.5 left z right 0.75 , which includes neither the origin nor infinity. Such a system is called a mixed-causality system as it contains a causal term 0.5^nu[n] and an anticausal term -(0.75)^nu[-n-1] .

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130390402
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786130390402
    • Format Fachbuch
    • Titel Z-Transform
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 92
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38