Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Zappa Szép Product
CHF 42.60
Auf Lager
SKU
RDRKSD69KP6
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, especially group theory, the Zappa Szép product (also known as the knit product) describes a way in which a group can be constructed from two subgroups. It is a generalization of the direct and semidirect products. It is named after Guido Zappa and Jenö Szép. Let G = GL(n,C), the general linear group of invertible n × n matrices over the complex numbers. For each matrix A in G, the QR decomposition asserts that there exists a unique unitary matrix Q and a unique upper triangular matrix R with positive real entries on the main diagonal such that A = QR. Thus G is a Zappa Szép product of the unitary group U(n) and the group (say) K of upper triangular matrices with positive diagonal entries. One of the most important examples of this is Hall's 1937 theorem on the existence of Sylow systems for soluble groups. This shows that every soluble group is a Zappa Szép product of a Hall p'-subgroup and a Sylow p-subgroup, and in fact that the group is a (multiple factor) Zappa Szép product of a certain set of representatives of its Sylow subgroups.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131182969
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131182969
- Format Fachbuch
- Titel Zappa Szép Product
- Herausgeber Betascript Publishing
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung