Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Zermelo Fraenkel Set Theory
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Zermelo Fraenkel set theory with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. It has a single primitive ontological notion, that of a hereditary well-founded set, and a single ontological assumption, namely that all individuals in the universe of discourse are such sets. ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary relation, set membership, which is usually denoted . The formula a b means that the set a is a member of the set b (which is also read, "a is an element of b" or "a is in b"). Most of the ZFC axioms state that particular sets exist. For example, the axiom of pairing says that given any two sets a and b there is a new set {a, b} containing exactly a and b. Other axioms describe properties of set membership. A goal of the ZFC axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe (also known as the cumulative hierarchy).
Klappentext
High Quality Content by WIKIPEDIA articles! Zermelo-Fraenkel set theory with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. It has a single primitive ontological notion, that of a hereditary well-founded set, and a single ontological assumption, namely that all individuals in the universe of discourse are such sets. ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary relation, set membership, which is usually denoted . The formula a b means that the set a is a member of the set b (which is also read, "a is an element of b" or "a is in b"). Most of the ZFC axioms state that particular sets exist. For example, the axiom of pairing says that given any two sets a and b there is a new set {a, b} containing exactly a and b. Other axioms describe properties of set membership. A goal of the ZFC axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe (also known as the cumulative hierarchy).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130315313
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130315313
- Format Kartonierter Einband
- ISBN 978-613-0-31531-3
- Titel Zermelo Fraenkel Set Theory
- Untertitel Set Theory, Foundations of Mathematics, Well-founded Relation, Hereditary Set, Domain of Discourse, Von Neumann Universe, Metamathematics, Continuum Hypothesis, Axiom of Choice
- Herausgeber Betascript Publishers
- Anzahl Seiten 68
- Genre Mathematik