Zero-product property

CHF 42.80
Auf Lager
SKU
J9SLI7K55E3
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

High Quality Content by WIKIPEDIA articles! In the mathematical areas of algebra and analysis, the zero-product property, also known as the zero-product rule, is an abstract and explicit statement of the familiar property from elementary mathematics that if the product of two real numbers is zero, then at least one of the numbers in the product (factors) must be zero.The interplay between the additive and multiplicative operations (where multiplication distributes over addition) leads automatically to Property 1: that 0 × a = 0 = a × 0 for all a in A (which is proved below). This is true for any context in which addition and multiplication have group structures defined on the same set (for example, an algebra). Property 2 is, however, not a natural consequence of this interplay, as there are algebraic structures in which addition and multiplication are defined which do not have the zero-product property.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130392673
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786130392673
    • Format Fachbuch
    • Titel Zero-product property
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38