Zonal Spherical Function

CHF 42.80
Auf Lager
SKU
5V4P7C3MMUT
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G / K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C algebra generated by the biinvariant functions of compact support, often called a Hecke algebra.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130957049
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Größe H220mm x B220mm
    • EAN 9786130957049
    • Format Fachbuch
    • Titel Zonal Spherical Function
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 80
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38